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Phase space geometry and stochasticity thresholds in Hamiltonian dynamics
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Results of numerical computations of the largest Lyapunov expongrtN) as a function of the energy
densitye and the number of particlds are here reported for a Fermi-Pasta-Ular 8 model. These results
show the coexistence at lardé of two thresholds: a stochasticity threshold, found before fordheodel
alone, and a strong stochasticity thresh@®T), found before for thg8 model alone. Although this coexist-
ence may seem at first sight plausible, it is not obviaysiori that thee+ 8 model superimposes properties
of the @ and 8 models independently. The main point of this paper, however, is a geometric characterization
of the SST via the mean curvature of the constant energy hypersurfaces in the phase space of the model and the
characteristic decay time of its time autocorrelation functigfx,N), which correlates with that aof;(e,N)
for fixed N. This appears to provide important information on the very complicated geometry of the phase
space of this simple solidlike model.

PACS numbegs): 05.20-y, 05.45-a

Since the seminal study by Fermi and collaboraf@isof The FPUa+ B model is described by the Hamiltonian
the dynamics of anharmonically perturbed chains of har-
monic oscillators, a wealth of investigations has been per- 1 @
formed. The overwhelming majority of these investigations, H(p,q)= >, [§p§+ E(Qk+1_Qk)2+ §(Qk+1—Qk)3
following Fermi et al, have dealt with the problem of the k=1
redistribution of energy—initially concentrated in a few nor-
mal modes—among all the normal modes, i.e., the problem +
of the approach to equipartition and equilibrium.

However, in this paper we concentrate on a different . . . .
problem, namely, what is the nature of the phase space, aﬁ'—lere the particles have unit mass an_d unit harmonic cou-
in particular of the constant energy surfaces, which represe ing constant and the end points are f|xeq:éqN+1=0)._
these equilibrium states? Thus, instead of considering thive can think of Eq.(1) as a truncgted_power SEres
relaxation properties ofionequilibrium initial states, which ~€xPansion of a Toda potentigk], which, in the same
are still addressed in the very recent literat[®§ we want  units, is described by the Hamiltoniad(p,q)=3}_13p;
here to investigate the nature of tfieal equilibriumstates,  + (1/4a?){exd —2a(0: 1— G 1+2(G11—0)—1},  Where
in particular their geometric structure. This was made posthe « is chosen equal to that in E¢l) and 8=3%a?. This
sible by a combination of the previously separately consid<hoice leads to a potential very close to interatomic poten-

N

)

(Qrr1— A, 1

ered Fermi-Pasta-UlarfiFPU) « and FPUB models. tials of the Morse or Lennard-Jones type in solids in a suit-
In the FPUa model[3], we discovered the existence of a ably restricted range of.
stochasticity thresholdST), at an energy density, below We have focused on chaoticity properties of generic tra-

which the dynamics appears to be regular. However, the dyjectories in the equilibrium state, as a function of the energy
namics of this model is stable only if does not exceed an density e=E/N and N. To that end, we have integrated
upper limite=0.5. Earlier in[4,5], the FPUB model was Hamilton’s equations of motion derived from E€l) with
considered, where a strong stochasticity thresk®®8) was  «=0.25 andB= 242, together with the standard tangent dy-
found, above which the dynamics appears to be strongly chaxamics equations. The method is described3h In what
otic. By combining these two models into the FRiU-B  follows, t=1 corresponds to %/ times the period of the
model, we are able to obtain a much more complete anéastest harmonic mode].
possibly generic picture of the dynamical behavior of these The largest Lyapunov exponentsg(e,N) have been de-
systems in that part of their phase space that corresponds termined at different energy densitiesand for different val-
equilibrium for all 0.3<e<9x 10" and 8<N=<1024. ues of N=8,16,32,64,128,512,1024. Random initial condi-
tions have been chosen, i.e{qi(0)=0,p;(0)=r;}, i
=1,... N, where the numbers, are Gauss-distributed ran-

*Email address: mcerruti@arcetri.astro.it dom numbers with zero mean and varian@. This can be
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FIG. 1. The largest Lyapunov exponemtﬂe'N) are shown for FIG. 2. Thee values of the stochasticity thresholds are plotted
different values of the energy densityfor various values ofN.  for different values ofN ranging from 8 to 64 and compared with
Starlike squares refer td=8, asterisks tdN= 16, open squares to those of the FPUx model[3] (open triangles
N=32, open triangles tt&\=64, open circles tdN=128, starlike
polygons toN=>512, and crosses t8=1024. Full squares refer to latter has been attributed to the existence of a B&d]. This
N= 32 and excitation amplitudesranging from 5 to 50. Solid lines crossover is presumably a signature of a transition from
are the asymptotic scalings® and ¢V at low and high energy Weak to strong chaos, as already discussel@f]. Unlike
density, respectively. the ST, the SST appears to be a generic property of Hamil-

tonian systems with a large numbeX$2) of degrees of
considered in this paper foi=32 ands =0.3 to 3(see Fig. freedom[7-18]: it is stable withN and it is independent of

1), i.e., initial g;(0)=Asin(27i/N) and p;(0)=0 for i the initial conditions.
=1, ... N=32, which confirmed again the independence of We now report a characterization of the SST within a
the final equilibrium state of the initial conditions. geometric framework19], which throws an entirely differ-

The results of the computations are reported in Fig. 1ent light on the nature of the SST. In particular, we are able
whereX(&,N) is plotted as a function of. We have used to find a geometric quantity, the mean curvature of the con-
t=4.3x10® as an upper bound for the integration time. If, stant energy hypersurfacgs in the phase space of the sys-
after such a long time, no convergence in timexgfto a  tem, whose behavior correlates with thatg{e,N). In fact,
positive asymptotic value could be observed, then the values standard way to investigate the geometry of a hypersurface
of A, att=4.3x 10° (the lowest points of the broken lines in 3™ is to study the way in which it curves around Ri"**

Fig. 1, marked by arrowsare taken as upper bounds for the [20], which is measured by the way the normal direction
Lyapunov exponents. FON=128, no reasonable upper changes as one moves from point to point on the surface.
bound of\; could be obtained, even with such a long inte- The rate of change of the normal direction to the hypersur-
gration time. In fact, the FPW&+ 8 model withB=%a?isa faceN at a pointxe 3¢ is described by the shape operator
fourth-order approximation of the Toda lattice model and at_,(v)= — VN, wherev is a tangent vector atandV ,, is the

low e the system is very close to integrability. directional derivative of the unit norm&, so thatL,(v)=

The patterns of,(e,N) reported in Fig. 1 display some —(VNj-v,...,VN,.;-V). Sincel, is a mapping of the
remarkable features. For small values of the energy densityangent space atinto itself, there aren independent eigen-
there is a sudden drop of; which, in close analogy with values[20] x1(X), . . . ,km(X), which are called the principal
Ref. [3], allows us to define a ST below which we can as-curvatures o™ at x. Their sum is the so-called mean cur-
sume that the overwhelming majority of trajectories in phasevature: M, (x)=(1/m)=" ; x;(x), the trace ofL,(v). It can
space are regular. This ST moves to smaller and smallase shown[21] that the mean curvature—replacing by
values ofe asN is increased. At eac, the value of atthe  2N—1, if N is the number of degrees of freedom—is given
lowest point on each curve,(e,N) has been taken as an by
estimate for thes value of the ST. In Fig. 2, these threshold
values are plotted vhl, together with those found for the 1 VH(x)
FPU a model [3]; their increase at any given value bf Ma(x)=— 2N—1V'(||VH(X)||
signals that the FPW+ 8 model is closer to integrability
than the FPUa model. The physical relevance of the van- where VH/||VH|| is the unit normal ta¢ at a given point
ishing of the ST with increasing)l is that the existence of x=(pi, ....Pn.01,s - .- .0N)-
regular regions below a critical energy density does not con- The autocorrelation functions T'(7)=(SM(t
stitute a problem for equilibrium statistical mechanics of + 7) SM(t)); of the time series of the valudd [ x(t)] at
macroscopic solidlike systems, if the one-dimensional FPUhe points of the hypersurface visited by the phase space
a+ B behavior is typical in general. trajectory can provide a good indication of how the “cover-

Around £=0.8, a “knee” is observed in the pattern ing” of a hypersurfaceX¢ by the motion of a phase space
N1(g,N) (Fig. 1), due to a crossover between two power lawtrajectory on it proceeds and is affected by the geometry and
behaviors,~ &2 at smalle and ~&'* at largee, where the  topology of theS¢ itself. A number ofM; autocorrelation
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FIG. 3. The mean curvature autocorrelation functibifs) are
shown forN=1024 and for different values of the energy density:
(@ £=0.931x 10 ¢,0.009 31,0.093%from top to bottory; (b) &
=0.279,1.397,9.314from top to bottom.

functionsI'(7) has been computed fid=8, .. .,1024 and
for different values ofc. Figures 8a and 3b) show some
examples of these functions plotted versus time For
=1024 and different energy densities. Abose-0.3, the
autocorrelation functions show a short initial regime of fast
decay, followed by a slow decay, which gives rise to a
“tail.” By defining an autocorrelation timer. as the time of
the first intercept of"(7) with the level 0.01, we have ob-
tained7.(&). The behavior ofr.(e) is reported in Fig. 4 for
different values ofN. Below £=0.3, the patterns of (7),
even atr~ 3000, do not allow an unambiguous definition of
7.. The 7.(¢) are sharply peaked aroursd=0.8. By super-
imposing the plot ol ; on the plot ofr., as is done in Fig.

5, one observes that the peak of the decay timés) at e
=0.8 corresponds to the region wherge) starts to deviate
from its &2 behavior, i.e., from that in the weakly chaotic
regime. The peak shown by, (e) provides a more precise

definition of the SST and of its value in terms of the energy

density than obtained by using the criterion[4f5], i.e., the
crossover between the two asymptaticcalings of\ ;.
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FIG. 4. The decay times. of theI'(7) are shown for different
values ofe. Open triangles refer ttN=64, open circles taN
=128, starlike polygons tti=512, and crosses td=1024.

tories, sensitive to the SST, have not yet succeeded. Thus,
the observed patterns bf{ 7) andr;(¢) seem closely related

to the geometric landscapes of the energy surfageand to

the way they are visited by the phase space trajectories on
them.

We now make an attempt to deduce physically from the
7.(€) curve the possible phase space geometry of the sys-
tem. One could think of the energy surfacEs as rough
bumpy surfaces as indicated by the nonconstancyef
Figures 4 and 5 show that a&=0.3 7,=0. This could per-
haps be understood by noting that fie landscape will then
be rather similar to that of a collection of harmonic oscilla-
tors. Therefore, during observation times much shorter than
\; ! [as in Fig. 3a)], T'(7) will reflect the interplay of an
almost regular dynamics on a relatively smooth surface with
a uniform distribution of bumps oB ¢ over which the phase
point “glides” easily. This might well be compatible with
the nondecaying patterns of(7) and ar.=0. For 0.3<e¢
<0.8, 7¢(e) climbs steeply to about 1300, after which it
decays somewhat less steeply to abut 200 ate =4 to 5.

The steep rise inr; for 0.3<¢<<0.8 seems to indicate the

. 1300.
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FIG. 5. The decay times, of theI'(7) (full circles) are plotted

It is worth ment|0n|ng that the above reported related betogether with the |argest Lyapunov expone{'ﬁﬁen C|rc|e$versus

havior of I'(7) and 7;(¢) has so far only been found for the
observablev ;. Attempts to show through other observables

¢, for various values oN; the solid lines are the power law$ and
81/4 of their asymptotic behaviors, respectively. Note the sharp

energy dependent memory effects along phase space trajanaximum ate=0.8.
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appearance of weak chaos when the landscapg @ much  which the phase point chaotically wiggles around. The small,
less smooth and much bumpier than 6£0.3. This would  yet sizable memory effect, as signaled by the long tail of
allow a quasitrapping-related “sticky” intermittent motion I'(7) for e>35, could therefore reflect the presence of some
and a very considerable lengthening n{¢). The subse- coherence in the large scale arrangement of the bumps on
guent decay of.(e) for 0.8<e<4 shows that this is short SE. _ )

lived and that, when tha,(¢) curve really starts to bend In this sense, the geometric framework based on the mean
over ate=4, and strong chaos begins to develop more an@urvature ofxe, My(x), allows a geometric “exploration”

more, the 7, drastically decreases again, since the nowP' the equilibrium phase space of the Fiad 8 model, and

emerging strong chaos, even if still weak, destroys the quac_ieducnon of some possible salient geometric features of the

sitrapping. This implies a strongly erratic motion of the |mm¢nsely'compllicated hypersurfaces in configl,'lrati.on space
phase point ofx. g, which has now a highly irregular, bumpy of this relatlv_ely simple model. TO. V_Vhﬁ!t extent_thls picture Is
landscape, compatible with a rapidly decayiigr) as well corre_ct fo_r this model and evenifitis, is generic for _solldllke
as a decreasing, with increasinge. The slower decay for Hamll_tonlan systems in general, remain interesting open
4< <35 occurs in the middle of the? to s transition ~ dUESONS:

and may be influenced by a balancing of the two different  This work was done during a visit of E.G.D.C. to the
physical mechanisms responsible for the weak chaos behaResearch Unit of Firenze of the INFM. It was financed by the
ior (¢2) and the strong chaos behaviar'(}). Finally, the IS Sabbatical Program of the theoretical division—Sezione
very slow decay ofr.(e) for £>35 might be due to the G—of the INFM, which is hereby gratefully acknowledged.
appearance of large scale inhomogeneities in the distributioB.G.D.C. is also indebted to the Office of Basic Engineering
of bumps or% ¢ . In fact, we might speculate the existence of Sciences of the U.S. Department of Energy, under Grant No.
a valley with very irregularly distributed bumps in it, in DE-FG 02-88-ER 13847.
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