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Phase space geometry and stochasticity thresholds in Hamiltonian dynamics

Monica Cerruti-Sola* and Marco Pettini†

Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
and Istituto Nazionale di Fisica della Materia, UdR di Firenze, Frienze, Italy

E. G. D. Cohen‡

The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399
~Received 10 May 2000!

Results of numerical computations of the largest Lyapunov exponentl1(«,N) as a function of the energy
density« and the number of particlesN are here reported for a Fermi-Pasta-Ulama1b model. These results
show the coexistence at largeN of two thresholds: a stochasticity threshold, found before for thea model
alone, and a strong stochasticity threshold~SST!, found before for theb model alone. Although this coexist-
ence may seem at first sight plausible, it is not obviousa priori that thea1b model superimposes properties
of the a andb models independently. The main point of this paper, however, is a geometric characterization
of the SST via the mean curvature of the constant energy hypersurfaces in the phase space of the model and the
characteristic decay time of its time autocorrelation functiontc(«,N), which correlates with that ofl1(«,N)
for fixed N. This appears to provide important information on the very complicated geometry of the phase
space of this simple solidlike model.

PACS number~s!: 05.20.2y, 05.45.2a
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Since the seminal study by Fermi and collaborators@1# of
the dynamics of anharmonically perturbed chains of h
monic oscillators, a wealth of investigations has been p
formed. The overwhelming majority of these investigatio
following Fermi et al., have dealt with the problem of th
redistribution of energy—initially concentrated in a few no
mal modes—among all the normal modes, i.e., the prob
of the approach to equipartition and equilibrium.

However, in this paper we concentrate on a differe
problem, namely, what is the nature of the phase space,
in particular of the constant energy surfaces, which repre
these equilibrium states? Thus, instead of considering
relaxation properties ofnonequilibrium initial states, which
are still addressed in the very recent literature@2#, we want
here to investigate the nature of thefinal equilibriumstates,
in particular their geometric structure. This was made p
sible by a combination of the previously separately cons
ered Fermi-Pasta-Ulam~FPU! a and FPUb models.

In the FPUa model@3#, we discovered the existence of
stochasticity threshold~ST!, at an energy density«, below
which the dynamics appears to be regular. However, the
namics of this model is stable only if« does not exceed a
upper limit «.0.5. Earlier in@4,5#, the FPUb model was
considered, where a strong stochasticity threshold~SST! was
found, above which the dynamics appears to be strongly c
otic. By combining these two models into the FPUa1b
model, we are able to obtain a much more complete
possibly generic picture of the dynamical behavior of the
systems in that part of their phase space that correspon
equilibrium for all 0.3,«,93104 and 8<N<1024.
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The FPUa1b model is described by the Hamiltonian

H~p,q!5 (
k51

N F1

2
pk

21
1

2
~qk112qk!

21
a

3
~qk112qk!

3

1
b

4
~qk112qk!

4G , ~1!

where the particles have unit mass and unit harmonic c
pling constant and the end points are fixed (q15qN1150).
We can think of Eq. ~1! as a truncated power serie
expansion of a Toda potential@6#, which, in the same

units, is described by the HamiltonianH(p,q)5(k51
N 1

2 pk
2

1(1/4a2)$exp@22a(qk112qk)#12a(qk112qk)21%, where
the a is chosen equal to that in Eq.~1! and b5 2

3 a2. This
choice leads to a potential very close to interatomic pot
tials of the Morse or Lennard-Jones type in solids in a s
ably restricted range of«.

We have focused on chaoticity properties of generic t
jectories in the equilibrium state, as a function of the ene
density «5E/N and N. To that end, we have integrate
Hamilton’s equations of motion derived from Eq.~1! with
a50.25 andb5 2

3 a2, together with the standard tangent d
namics equations. The method is described in@3#. In what
follows, t51 corresponds to 1/p times the period of the
fastest harmonic mode@3#.

The largest Lyapunov exponentsl1(«,N) have been de-
termined at different energy densities« and for different val-
ues of N58,16,32,64,128,512,1024. Random initial cond
tions have been chosen, i.e.,$qi(0)50,pi(0)5r i%, i
51, . . . ,N, where the numbersr i are Gauss-distributed ran
dom numbers with zero mean and varianceA2«. This can be
considered as a generically close to equilibrium initial sta
as has been investigated already in previous papers@3–5#. As
an additional check, single mode excitations have also b
6078 ©2000 The American Physical Society
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PRE 62 6079PHASE SPACE GEOMETRY AND STOCHASTICITY . . .
considered in this paper forN532 and«50.3 to 3~see Fig.
1!, i.e., initial qi(0)5A sin(2pi/N) and pi(0)50 for i
51, . . . ,N532, which confirmed again the independence
the final equilibrium state of the initial conditions.

The results of the computations are reported in Fig.
wherel1(«,N) is plotted as a function of«. We have used
t54.33108 as an upper bound for the integration time.
after such a long time, no convergence in time ofl1 to a
positive asymptotic value could be observed, then the va
of l1 at t54.33108 ~the lowest points of the broken lines i
Fig. 1, marked by arrows! are taken as upper bounds for th
Lyapunov exponents. ForN>128, no reasonable uppe
bound ofl1 could be obtained, even with such a long int
gration time. In fact, the FPUa1b model withb5 2

3 a2 is a
fourth-order approximation of the Toda lattice model and
low « the system is very close to integrability.

The patterns ofl1(«,N) reported in Fig. 1 display som
remarkable features. For small values of the energy den
there is a sudden drop ofl1 which, in close analogy with
Ref. @3#, allows us to define a ST below which we can a
sume that the overwhelming majority of trajectories in pha
space are regular. This ST moves to smaller and sma
values of« asN is increased. At eachN, the value of« at the
lowest point on each curvel1(«,N) has been taken as a
estimate for the« value of the ST. In Fig. 2, these thresho
values are plotted vsN, together with those found for th
FPU a model @3#; their increase at any given value ofN
signals that the FPUa1b model is closer to integrability
than the FPUa model. The physical relevance of the va
ishing of the ST with increasingN is that the existence o
regular regions below a critical energy density does not c
stitute a problem for equilibrium statistical mechanics
macroscopic solidlike systems, if the one-dimensional F
a1b behavior is typical in general.

Around «.0.8, a ‘‘knee’’ is observed in the patter
l1(«,N) ~Fig. 1!, due to a crossover between two power la
behaviors,;«2 at small« and ;«1/4 at large«, where the

FIG. 1. The largest Lyapunov exponentsl1(«,N) are shown for
different values of the energy density« for various values ofN.
Starlike squares refer toN58, asterisks toN516, open squares to
N532, open triangles toN564, open circles toN5128, starlike
polygons toN5512, and crosses toN51024. Full squares refer to
N532 and excitation amplitudesA ranging from 5 to 50. Solid lines
are the asymptotic scalings«2 and «1/4 at low and high energy
density, respectively.
f

,

es

-

t

ty,

-
e
er

-
f
U

latter has been attributed to the existence of a SST@4,5#. This
crossover is presumably a signature of a transition fr
weak to strong chaos, as already discussed in@4,5#. Unlike
the ST, the SST appears to be a generic property of Ha
tonian systems with a large number (N@2) of degrees of
freedom@7–18#: it is stable withN and it is independent o
the initial conditions.

We now report a characterization of the SST within
geometric framework@19#, which throws an entirely differ-
ent light on the nature of the SST. In particular, we are a
to find a geometric quantity, the mean curvature of the c
stant energy hypersurfacesSE in the phase space of the sy
tem, whose behavior correlates with that ofl1(«,N). In fact,
a standard way to investigate the geometry of a hypersur
Sm is to study the way in which it curves around inRm11

@20#, which is measured by the way the normal directi
changes as one moves from point to point on the surfa
The rate of change of the normal direction to the hypers
faceN at a pointxPSE is described by the shape operat
Lx(v)52“vN, wherev is a tangent vector atx and“v is the
directional derivative of the unit normalN, so thatLx(v)5
2(“N1•v, . . . ,“Nm11•v). Since Lx is a mapping of the
tangent space atx into itself, there arem independent eigen
values@20# k1(x), . . . ,km(x), which are called the principa
curvatures ofSm at x. Their sum is the so-called mean cu
vature:M1(x)5(1/m)( i 51

m k i(x), the trace ofLx(v). It can
be shown@21# that the mean curvature—replacingm by
2N21, if N is the number of degrees of freedom—is giv
by

M1~x!52
1

2N21
¹•S ¹H~x!

i¹H~x!i D , ~2!

where“H/i“Hi is the unit normal toSE at a given point
x5(p1 , . . . ,pN ,q1 , . . . ,qN).

The autocorrelation functions G(t)5^dM1(t
1t)dM1(t)& t of the time series of the valuesM1@x(t)# at
the points of the hypersurface visited by the phase sp
trajectory can provide a good indication of how the ‘‘cove
ing’’ of a hypersurfaceSE by the motion of a phase spac
trajectory on it proceeds and is affected by the geometry
topology of theSE itself. A number ofM1 autocorrelation

FIG. 2. The« values of the stochasticity thresholds are plott
for different values ofN ranging from 8 to 64 and compared wit
those of the FPUa model @3# ~open triangles!.
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functionsG(t) has been computed forN58, . . .,1024 and
for different values of«. Figures 3~a! and 3~b! show some
examples of these functions plotted versus time forN
51024 and different energy densities. Above«.0.3, the
autocorrelation functions show a short initial regime of fa
decay, followed by a slow decay, which gives rise to
‘‘tail.’’ By defining an autocorrelation timetc as the time of
the first intercept ofG(t) with the level 0.01, we have ob
tainedtc(«). The behavior oftc(«) is reported in Fig. 4 for
different values ofN. Below «.0.3, the patterns ofG(t),
even att;3000, do not allow an unambiguous definition
tc . Thetc(«) are sharply peaked around«.0.8. By super-
imposing the plot ofl1 on the plot oftc , as is done in Fig.
5, one observes that the peak of the decay timestc(«) at «
.0.8 corresponds to the region wherel1(«) starts to deviate
from its «2 behavior, i.e., from that in the weakly chaot
regime. The peak shown bytc(«) provides a more precis
definition of the SST and of its value in terms of the ener
density than obtained by using the criterion of@4,5#, i.e., the
crossover between the two asymptotic« scalings ofl1.

It is worth mentioning that the above reported related
havior ofG(t) andtc(«) has so far only been found for th
observableM1. Attempts to show through other observabl
energy dependent memory effects along phase space tr

FIG. 3. The mean curvature autocorrelation functionsG(t) are
shown forN51024 and for different values of the energy densi
~a! «50.93131026,0.009 31,0.0931~from top to bottom!; ~b! «
50.279,1.397,9.314~from top to bottom!.
t

y

-

ec-

tories, sensitive to the SST, have not yet succeeded. T
the observed patterns ofG(t) andtc(«) seem closely related
to the geometric landscapes of the energy surfacesSE and to
the way they are visited by the phase space trajectories
them.

We now make an attempt to deduce physically from
tc(«) curve the possible phase space geometry of the
tem. One could think of the energy surfacesSE as rough
bumpy surfaces as indicated by the nonconstancy ofM1.
Figures 4 and 5 show that at«<0.3 tc.0. This could per-
haps be understood by noting that theSE landscape will then
be rather similar to that of a collection of harmonic oscill
tors. Therefore, during observation times much shorter t
l1

21 @as in Fig. 3~a!#, G(t) will reflect the interplay of an
almost regular dynamics on a relatively smooth surface w
a uniform distribution of bumps onSE over which the phase
point ‘‘glides’’ easily. This might well be compatible with
the nondecaying patterns ofG(t) and atc.0. For 0.3,«
,0.8, tc(«) climbs steeply to about 1300, after which
decays somewhat less steeply to abouttc.200 at«54 to 5.
The steep rise intc for 0.3,«,0.8 seems to indicate th

:

FIG. 4. The decay timestc of the G(t) are shown for different
values of «. Open triangles refer toN564, open circles toN
5128, starlike polygons toN5512, and crosses toN51024.

FIG. 5. The decay timestc of theG(t) ~full circles! are plotted
together with the largest Lyapunov exponents~open circles! versus
«, for various values ofN; the solid lines are the power laws«2 and
«1/4 of their asymptotic behaviors, respectively. Note the sh
maximum at«.0.8.
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PRE 62 6081PHASE SPACE GEOMETRY AND STOCHASTICITY . . .
appearance of weak chaos when the landscape ofSE is much
less smooth and much bumpier than for«,0.3. This would
allow a quasitrapping-related ‘‘sticky’’ intermittent motio
and a very considerable lengthening oftc(«). The subse-
quent decay oftc(«) for 0.8,«,4 shows that this is shor
lived and that, when thel1(«) curve really starts to bend
over at«.4, and strong chaos begins to develop more a
more, the tc drastically decreases again, since the n
emerging strong chaos, even if still weak, destroys the q
sitrapping. This implies a strongly erratic motion of th
phase point onSE , which has now a highly irregular, bump
landscape, compatible with a rapidly decayingG(t) as well
as a decreasingtc with increasing«. The slower decay for
4,«,35 occurs in the middle of the«2 to «1/4 transition
and may be influenced by a balancing of the two differ
physical mechanisms responsible for the weak chaos be
ior («2) and the strong chaos behavior («1/4). Finally, the
very slow decay oftc(«) for «.35 might be due to the
appearance of large scale inhomogeneities in the distribu
of bumps onSE . In fact, we might speculate the existence
a valley with very irregularly distributed bumps in it, i
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which the phase point chaotically wiggles around. The sm
yet sizable memory effect, as signaled by the long tail
G(t) for «.35, could therefore reflect the presence of so
coherence in the large scale arrangement of the bump
SE .

In this sense, the geometric framework based on the m
curvature ofSE , M1(x), allows a geometric ‘‘exploration’’
of the equilibrium phase space of the FPUa1b model, and
deduction of some possible salient geometric features of
immensely complicated hypersurfaces in configuration sp
of this relatively simple model. To what extent this picture
correct for this model and even if it is, is generic for solidlik
Hamiltonian systems in general, remain interesting op
questions.
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